VEKTORANALYS

Kursvecka 4

NABLAOPERATOR och NABLARÄKNING,

INTEGRALSATSER,

KARTESISKA TENSORER och INDEXRÄKNING

Kapitel 8-9 +13.1 och 13.5 (till sida 169)
Sidor $83-98$

TARGET PROBLEM

The sun is composed mainly of hydrogen (74\%)
and helium (25\%)

The temperature is so high (6000K on the surface, 15MK in the core) that the atoms are ionized:

- the sun is basically composed of a "ionized gas" made of electrons and protons
- this kind of "ionized gas" is the fourth state of matter (solid, liquid, gas and): plasma

What happens in the sun core?
Protons fuse together and produce helium and energy. (the actual chain of reactions is more complicated)

On Earth, scientists are trying to use this principle to build a fusion reactor using the reaction:

$$
{ }^{2} \mathrm{H}+{ }^{3} \mathrm{H} \rightarrow{ }^{4} \mathrm{He}+\mathrm{n}+\text { energy }
$$

TARGET PROBLEM

${ }^{2} \mathrm{H}+{ }^{3} \mathrm{H} \rightarrow{ }^{4} \mathrm{He}+\mathrm{n}+$ energy

Can we use this method to obtain energy, here on the earth? Physicists and engineers are working (also at KTH) on it...

The JET experiment (located near Oxford)
can produce plasmas for $\approx 10-20 \mathrm{sec}$ with max temperature 100-200 million K
http://www.efda.org/jet/

Outer view of JET

Inner view of the plasma chamber in JET (chamber height and width: $2.1 \mathrm{~m} \times 1.25 \mathrm{~m}$)

At the Division of Fusion Plasma Physics in KTH we reach 5 million K

Outer view of EXTRAP T2R at KTH (chamber height and width: $0.2 \mathrm{~m} \times 0.2 \mathrm{~m}$)

For more info visit the Division of Fusion Plasma Physics at KTH or visit the website http://www.kth.se/ees/omskolan/organisation/avdelningar/fpp

TARGET PROBLEM

In the plasma there are many particles $\left(10^{19}, 10^{20}\right.$ per $\left.\mathrm{m}^{3}\right)$, strong magnetic and electric fields and electric currents.
How can we describe the behaviour of the plasma?

Magnetohydrodynamics (MHD)

Simple example: THE THETA PINCH

When the plasma is in equilibrium, the MHD equations can be simplified to:

$$
\left\{\begin{array}{l}
\operatorname{grad} p=\bar{j} \times \bar{B} \\
\operatorname{rot} \bar{B}=\mu_{0} \bar{j}
\end{array} \quad \Rightarrow \quad \operatorname{grad} p=\frac{1}{\mu_{0}}(\operatorname{rot} \bar{B}) \times \bar{B}\right.
$$

We need to introduce:

- Operators
- Nabla

OPERATOR

What is a function?
A function is a law defined in a domain X that to each element x in X associates one and only one element y in Y .

Example:

$$
\begin{aligned}
& X=[0,2] \\
& f(x)=x^{2}
\end{aligned}
$$

The slope of $f(x)$ is its derivative:

$$
g(x)=\frac{d f(x)}{d x}
$$

$g(x)$ is still a function.

So the derivative is a rule that associates a function to another function.
The derivative is an example of operator

OPERATOR

DEFINITION

An operator T is a law that to each function f in the function class D_{t} associates a function $T(f)$.

DEFINITION
An operator T is linear if $\quad T(a f+b g)=a T(f)+b T(g)$, where f and g are functions belonging to D_{t} and a, b constants

EXAMPLE: $\quad T=\frac{d}{d x} \quad$ is it linear? YES

$$
T(a f+b g)=\frac{d(a f+b g)}{d x}=a \frac{d f}{d x}+b \frac{d g}{d x}=a T(f)+b T(g)
$$

SUM AND PRODUCT OF OPERATORS

Sum of two operators
Product of two operators
$(T+U)(f)=T(f)+U(f)$
$(T U)(f)=T(U(f))$

NABLA

Gradient, divergence and curl have something in common:

$$
\begin{aligned}
\operatorname{grad} \phi \equiv\left(\frac{\partial \phi}{\partial x}, \frac{\partial \phi}{\partial y}, \frac{\partial \phi}{\partial z}\right) & \operatorname{grad} \phi=\nabla \phi \\
\operatorname{div} \bar{A} \equiv \frac{\partial A_{x}}{\partial x}+\frac{\partial A_{y}}{\partial y}+\frac{\partial A_{z}}{\partial z} & \operatorname{div} \bar{A}=\nabla \cdot \bar{A} \\
\operatorname{rot} \bar{A} \equiv\left|\begin{array}{lll}
\hat{e}_{x} & \hat{e}_{y} & \hat{e}_{z} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
A_{x} & A_{y} & A_{z}
\end{array}\right| & \operatorname{rot} \bar{A}=\nabla \times \bar{A}
\end{aligned}
$$

$\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right) \begin{aligned} & \text { is common } \\ & \text { to all three definitions }\end{aligned}$

$$
\nabla \equiv\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)
$$

NABLA

LAPLACE OPERATOR and something more

- The divergence of the gradient is called laplacian or Laplace operator
$\nabla \cdot \nabla \phi=\nabla^{2} \phi \quad$ is the laplacian of the scalar field ϕ. Sometimes written as: $\Delta \phi$
In cartesian coordinates: $\nabla^{2}=\nabla \cdot \nabla=\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right) \cdot\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)=\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right)$

$$
\nabla^{2} \phi=\left(\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}+\frac{\partial^{2} \phi}{\partial z^{2}}\right)
$$

- The nabla can be used to define new operators like: $\bar{A} \cdot \nabla$ or $\bar{A} \times \nabla$

Example: $\bar{A} \cdot \nabla=\left(A_{x}, A_{y}, A_{z}\right) \cdot\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)=\left(A_{x} \frac{\partial}{\partial x}+A_{y} \frac{\partial}{\partial y}+A_{z} \frac{\partial}{\partial z}\right)$
so: $(\bar{A} \cdot \nabla) \bar{B}=\left(A_{x} \frac{\partial \bar{B}}{\partial x}+A_{y} \frac{\partial \bar{B}}{\partial y}+A_{z} \frac{\partial \bar{B}}{\partial z}\right)$

Note that: $\quad(\bar{A} \cdot \nabla) \bar{B} \neq \bar{A}(\nabla \cdot \bar{B})$

```
EXERCISE: calculate }\overline{a}(\nabla\cdot\overline{r}
```


VECTOR IDENTITIES

ϕ and ψ : scalar fields
\bar{A} and \bar{B} : vector fields

$$
\begin{aligned}
& \nabla(\phi \psi)=(\nabla \phi) \psi+\phi(\nabla \psi) \\
& \nabla \cdot(\phi \bar{A})=(\nabla \phi) \cdot \bar{A}+\phi \nabla \cdot \bar{A} \\
& \nabla \times(\phi \bar{A})=(\nabla \phi) \times \bar{A}+\phi \nabla \times \bar{A} \\
& \nabla \cdot(\bar{A} \times \bar{B})=\bar{B} \cdot(\nabla \times \bar{A})-\bar{A} \cdot(\nabla \times \bar{B}) \\
& \nabla \times(\bar{A} \times \bar{B})=(\bar{B} \cdot \nabla) \bar{A}-\bar{B}(\nabla \cdot \bar{A})-(\bar{A} \cdot \nabla) \bar{B}+\bar{A}(\nabla \cdot \bar{B}) \\
& \nabla(\bar{A} \cdot \bar{B})=(\bar{B} \cdot \nabla) \bar{A}+(\bar{A} \cdot \nabla) \bar{B}+\bar{B} \times(\nabla \times \bar{A})+\bar{A} \times(\nabla \times \bar{B}) \\
& \nabla \times(\nabla \phi)=0 \\
& \nabla \cdot(\nabla \times \bar{A})=0 \\
& \nabla \times(\nabla \times \bar{A})=\nabla(\nabla \cdot \bar{A})-\nabla^{2} \bar{A} \quad
\end{aligned}
$$

ID1
ID2
ID3

ID4

ID5

ID6

ID7
ID8
ID9

NABLARÄKNING

Let's consider ID2: $\quad \nabla \cdot(\phi \bar{A})=\underbrace{\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial z}, \frac{\partial}{\partial z}\right)} \cdot(\phi \bar{A})$
Can we simply use the vector algebra rules? NO!
Nabla contains derivatives and we know that: $\quad \frac{d(f g)}{d x}=\frac{d f}{d x} g+f \frac{d g}{d x}$
ID1
The derivative must be applied to all the fields in the bracket. How to remember that with the nabla?
By adding dots to each field and rewriting the expression as a sum:

$$
\nabla \cdot(\phi \bar{A})=\nabla \cdot(\phi \bar{A})+\nabla \cdot(\phi \stackrel{\bar{A}}{\bar{A}})
$$

IMPORTANT: after the previous step, the nabla will be applied only to the field with the dot. Now the expression can be rewritten using vector algebra rules (the goal is to obtain an expression in which only the field with the dot follows nabla):

$$
\begin{aligned}
& \nabla \cdot(\phi \bar{A})=\nabla \cdot(\phi \bar{A})+\nabla \cdot(\phi \bar{A})=\bar{A} \cdot \nabla \phi+\phi \nabla \cdot \bar{A} \\
& \bar{n} \cdot(c \bar{a})+\bar{n} \cdot(c \bar{a})= \\
& \bar{n} \cdot(\bar{a}) c+\bar{n} \cdot(\bar{a}) c=
\end{aligned}
$$

NABLARÄKNING

To correctly perform the nabla calculation, there are three steps.
We want to calculate the following expression: $\nabla \cdot \cdot(\phi, \bar{A}, \psi, \bar{B}, \ldots)$
Where $\nabla \cdot$ can be: ∇ (gradient) or $\nabla \cdot$ (divergence) or $\nabla \times$ (curl)
STEP 1 Rewrite the expression as a sum with N terms, where N is the number of (scalar or vector) fields in the expression. Every term in the sum must be identical to the original expression, but the i-th field in the i-th term must have a dot. This is to remember that nabla is applied to the field with the "dot".

$$
\begin{aligned}
\nabla \cdot \cdot(\phi, \bar{A}, \psi, \bar{B}, \ldots)= & \nabla \cdots(\phi, \bar{A}, \psi, \bar{B}, \ldots)+\nabla \cdots(\phi, \bar{A}, \psi, \bar{B}, \ldots)+ \\
& \nabla \cdot(\phi, \bar{A}, \psi, \bar{B}, \ldots)+\nabla \cdots(\phi, \bar{A}, \psi, \bar{B}, \ldots)+\ldots
\end{aligned}
$$

STEP 2 Now, the nabla can be considered as a vector. Each term can be rewritten using vector algebra rules. The aim is to reach an expression for which in each term only the field with the "dot" appears after the nabla.

STEP 3 Finally, you can remove the "dot".

NABLARÄKNING: EXAMPLES

Prove ID4: $\nabla \cdot(\bar{A} \times \bar{B})=\bar{B} \cdot(\nabla \times \bar{A})-\bar{A} \cdot(\nabla \times \bar{B})$
ID4

$$
\begin{aligned}
\left.\nabla \cdot(\bar{A} \times \bar{B})=\nabla \cdot(\bar{A} \times \bar{B})+\nabla \cdot(\bar{A} \times \bar{B})=\begin{array}{l}
\quad \\
\\
\\
\quad \text { Now nabla can be treated as vector. } \\
\quad \text { Then, since: } \bar{n} \cdot(\bar{A} \times \bar{B})=\bar{B} \cdot(\bar{n} \times \bar{A})=-\bar{A} \cdot(\bar{n} \times \bar{B}) \\
=\bar{B} \cdot(\nabla \times \bar{A})-\bar{A} \cdot(\nabla \times \bar{B})=\bar{B} \cdot \operatorname{rot} \bar{A}-\bar{A} \cdot \operatorname{rot} \bar{B}
\end{array}\right)
\end{aligned}
$$

Prove ID7: $\quad \nabla \times(\nabla \phi)=0$

$$
\begin{aligned}
\nabla \times(\nabla \phi) & =\nabla \times(\nabla \phi)={ }_{\text {then, since: } \bar{n} \times(\bar{n} \lambda)=\lambda(\bar{n} \times \bar{n})=0} \\
& =\nabla \times(\nabla \phi)=0
\end{aligned}
$$

Prove ID9: $\quad \nabla \times(\nabla \times \bar{A})=\nabla(\nabla \cdot \bar{A})-\nabla^{2} \bar{A}$

$$
\begin{aligned}
\nabla \times(\nabla \times \bar{A}) & =\nabla \times(\nabla \times \bar{A})=\underset{\text { since: } \bar{n} \times(\bar{n} \times \bar{c})=\bar{n}(\bar{n} \cdot \bar{c})-\bar{c}(\bar{n} \cdot \bar{n})}{ } \\
& =\nabla(\nabla \cdot \bar{A})-(\nabla \cdot \nabla) \bar{A}=\nabla(\nabla \cdot \bar{A})-\nabla^{2} \bar{A}
\end{aligned}
$$

TARGET PROBLEM

$$
\begin{aligned}
& \operatorname{grad} p=\frac{1}{\mu_{0}}(\operatorname{rot} \bar{B}) \times \bar{B} \\
& \nabla p=\frac{1}{\mu_{0}}(\nabla \times \bar{B}) \times \bar{B}
\end{aligned}
$$

$$
\text { but } \quad \bar{a} \times(\bar{n} \times \bar{b})=\bar{n}(\bar{a} \cdot \bar{b})-\bar{b}(\bar{a} \cdot \bar{n})
$$

$$
(\nabla \times \overline{\bar{B}}) \times \bar{B}=-\bar{B} \times(\nabla \times \overline{\bar{B}})=-\nabla(\bar{B} \cdot \overline{\bar{B}})+(\bar{B} \cdot \nabla) \bar{B}=
$$

$$
\left.\nabla\left(p+\frac{B^{2}}{2 \mu_{0}}\right)=\frac{1}{\mu_{0}}(\bar{B} \cdot \nabla) \bar{B} \right\rvert\,
$$

$$
\begin{aligned}
= & -\frac{1}{2} \nabla B^{2}+(\bar{B} \cdot \nabla) \bar{B} \\
& \nabla \bar{B}^{2}=\nabla(\bar{B} \cdot \bar{B})=\nabla(\bar{B} \cdot \bar{B})+\nabla(\bar{B} \cdot \bar{B})=2 \nabla(\bar{B} \cdot \bar{B})
\end{aligned}
$$

In our case field lines are straight and parallel

$$
\nabla\left(p+\frac{B^{2}}{2 \mu_{0}}\right)=0 \Rightarrow p+\frac{B^{2}}{2 \mu_{0}}=\text { constant }
$$

A BIT OF HISTORY...

Why the word "nabla"?

The theory of nabla operator was developed by Tait (a co-worker of Maxwell).
It was one of his most important achievements.
Tait was also a good musician in playing an old assyrian instrument similar to an harp. The name of this instrument in greek is nabla.

The name "nabla operator" was suggested by James Clerk Maxwell to make a joke on Tait's hobby

WHICH STATEMENT IS WRONG?

1- grad, div and rot can be expressed with the help of ∇ (yellow triangle)
$2-\nabla$ is a vector (red square)

3- $\nabla \mathbf{x}(\nabla \phi)=0 \quad$ (green circle)
$4-\nabla \cdot(\nabla x A)=0 \quad$ (blue star)

INTEGRALSATSER

$$
d \bar{F}=-p \hat{n} d S
$$

where $p\left[N / m^{2}\right]$ is the pressure

$$
\bar{F}=\int d \bar{F}=\oiint_{S}(-p \hat{n} d S)=-\oiint_{S, \pi} p d \bar{S}
$$

How to continue?
Apply Guass's theorem? $\oiint \int_{S} \bar{A} \cdot d \bar{S}=\iiint_{V} \operatorname{div} \bar{A} d V$

We need to generalize the Guass's theorem.

In previous lessons we saw that:

$$
\begin{align*}
& \int_{P}^{Q} \nabla \phi \cdot d \bar{r}=\phi(Q)-\phi(P) \tag{1}\\
& \iint_{S} \nabla \times \bar{A} \cdot d \bar{S}=\oint_{L} \bar{A} \cdot d \bar{r} \tag{Stokes}\\
& \iiint_{V} \nabla \cdot \bar{A} d V=\oiint_{S} \bar{A} \cdot d \bar{S} \tag{2}
\end{align*}
$$

What do they have in common?
They all express the integral of a derivative of a function in terms of the values of the function at the integration domain boundaries.

In this sense, theorems (1), (2) and (3) are a generalization of:

$$
\int_{a}^{b} \frac{d f}{d x} d x=f(b)-f(a)
$$

We can further generalize the Gauss's theorem :

$$
\oiint_{S} d \bar{S}(\ldots)=\iiint_{V} d V \nabla(\ldots)
$$

$$
\int_{S} d \bar{S}(\ldots)=\iiint_{V} d V \nabla(\ldots)
$$

(A) If $(\ldots)=\cdot \bar{A}$, we obtain the Gauss's theorem (already proved)
(B) If $\quad(\ldots)=\phi \quad$, we obtain: $\notint_{S} d \bar{S} \phi=\iiint_{V} d V \nabla \phi$ PROOF

$$
\begin{aligned}
\hat{e}_{i} \cdot \iint_{S} \phi d \bar{S} & =\iint_{S} \phi \hat{e}_{i} \cdot d \bar{S} \stackrel{\downarrow}{=} \iiint_{V} \nabla\left(\phi \hat{e}_{i}\right) d V \stackrel{\downarrow}{=} \\
& =\iiint_{V}\left((\nabla \phi) \cdot \hat{e}_{i}+\phi \nabla \cdot \hat{e}_{i}\right) d V=\iiint_{V} \nabla \phi \cdot \hat{e}_{i} d V=\hat{e}_{i} \cdot \iiint_{V} \nabla \phi d V
\end{aligned}
$$

(C) If $(\ldots)=\times \bar{A}$, we obtain: $\iint_{S} d \bar{S} \times \bar{A}=\iiint_{V}(\nabla \times \bar{A}) d V$ PROOF

Multiply by \hat{e}_{i}, use the Gauss's theorem and then ID4

We can further generalize also the Stokes' theorem :

$$
\oint_{L} d \bar{r}(\ldots)=\iint_{S}(d \bar{S} \times \nabla)(\ldots)
$$

Generalized Stokes's theorem

where (...) can be substituted with everything that gives a well defined meaning to both sides of the expression.
(A) If $(\ldots)=\cdot \bar{A}$, we obtain the Stokes's theorem (already proved)
(B) If $(\ldots)=\phi$, we obtain: $\oint_{L} \phi d \bar{r}=\iint_{S} d \bar{S} \times \operatorname{grad} \phi$

PROOF
Multiply by \hat{e}_{i}, use the Stokes's theorem and then ID3
(C) If $(\ldots)=\times \bar{A}$, we obtain: $\oint_{L} d \bar{r} \times \bar{A}=\iint_{S}(d \bar{S} \times \nabla) \times \bar{A}$

PROOF

Multiply by \hat{e}_{i} and use the Stokes's theorem.

TARGET PROBLEM

$$
d \bar{F}=-p \hat{n} d S
$$

where $p\left[N / m^{2}\right]$ is the pressure

$$
\bar{F}=\int d \bar{F}=\oiint_{S}(-p \hat{n} d S)=-\oiint_{S} p d \bar{S}
$$

But $\overline{\mathrm{A}}$ is vector, while p is a scalar!

How to continue?
Apply Gauss's theorem?
We apply the generalized Gauss's theorem, with (...)= $=$.

$$
\oiint_{S} \bar{A} \cdot d \bar{S}=\iiint_{V} d i v \bar{A} d V
$$

$$
\oiint \oiint_{S} \phi d \bar{S}=\iiint_{V} \nabla \phi d V
$$

$$
\left.\begin{array}{l}
\bar{F}=-\oiint_{S} p d \bar{S}=-\iiint_{V} \nabla p d V \\
p=p_{0}-\rho g z \\
\nabla p=(0,0,-\rho g)
\end{array}\right\} \quad \Longrightarrow \quad \bar{F}=\iiint_{V} \rho g \hat{e}_{z} d V=\rho g V \hat{e}_{z}
$$

WHICH STATEMENT IS WRONG?

1- Gauss's and Stokes's theorems imply that the integral of the derivative of a function can be expressed as the value of the function at the integration domain boundaries. (yellow)

2- $\int_{L} \phi d \bar{r}$ is a vector
3- $\iint_{S} \phi d \bar{S} \quad$ is a vector
(green)

4- $\iint_{S} d \bar{S} \times \bar{A} \quad$ is a scalar \quad (blue)

INDEXRÄKNING (suffix notation) AND
 CARTESIAN TENSORS

INDEXRÄKNING

To simplify this expression $\quad \nabla \cdot(\bar{A} \times \bar{B})$ we used the "nablaräkning"

$$
=\nabla \cdot(\bar{A} \times \bar{B})+\nabla \cdot(\bar{A} \times \bar{B})=\bar{B} \cdot \operatorname{rot} \bar{A}-\bar{A} \cdot \operatorname{rot} \bar{B}
$$

Can we use smarter methods?

YES (sometimes)!
These are called "suffix notation methods" ("indexräkning") and come from the study of tensors.

To understand this method, we start with a (brief) look at Cartesian tensors

PHYSICAL EXAMPLE

ELECTRICAL CONDUCTIVITY
Ohm's law:

$$
\begin{aligned}
& \text { If } \bar{E}=\left(0, E_{y}, 0\right) \\
& \text { then } \bar{j}=\left(0, \sigma E_{y}, 0\right)
\end{aligned}
$$

But for many materials this is not true!!

$$
\bar{j}=\left(j_{x}, j_{y}, j_{z}\right)
$$

Is the Ohm's law wrong? NO!
σ is not a scalar
σ is a cartesian tensor of rank 2

$$
\begin{aligned}
& \bar{j}=\sigma \bar{E} \Rightarrow\left(\begin{array}{l}
j_{x} \\
j_{y} \\
j_{z}
\end{array}\right)=\left(\begin{array}{lll}
\sigma_{x x} & \sigma_{x y} & \sigma_{x z} \\
\sigma_{y x} & \sigma_{y y} & \sigma_{y z} \\
\sigma_{z x} & \sigma_{z y} & \sigma_{z z}
\end{array}\right)\left(\begin{array}{l}
E_{x} \\
E_{y} \\
E_{z}
\end{array}\right) \\
& \text { If } \bar{E}=\left(0, E_{y}, 0\right) \\
& \text { then } \bar{j}=\left(\sigma_{x y} E_{y}, \sigma_{y y} E_{y}, \sigma_{z y} E_{y}\right)
\end{aligned}
$$

SUFFIX NOTATION

1- Indices x, y, z can be substituted with $1,2,3$
2- Coordinates x, y, z with x_{1}, x_{2}, x_{3}. Examples:
$A_{x}=A_{1}$
$\left(A_{x}, A_{y}, A_{z}\right)=\left(A_{1}, A_{2}, A_{3}\right)$
$\hat{e}_{x}=\hat{e}_{1}$
$\hat{e}_{y}=\hat{e}_{2}$
$\hat{e}_{z}=\hat{e}_{3}$
$\frac{\partial \phi}{\partial y}=\partial_{2} \phi=\phi_{2} \quad \frac{\partial A_{x}}{\partial y}=A_{1,2}$
$\uparrow X_{3}$
$\bar{c}=\bar{a}+\bar{b} \Rightarrow \underbrace{c_{i}=a_{i}+b_{i}}_{\uparrow}$
in suffix notation this corresponds to the 3 equations obtained using $i=1,2,3$

The suffix i is called "free suffix"
The choice of the free suffix is arbitrary:

$$
\begin{aligned}
& c_{j}=a_{j}+b_{j} \\
& c_{m}=a_{m}+b_{m}
\end{aligned} \quad \text { represent the same equation! }
$$

But the same free suffix must be used for each term of the equation

SUFFIX NOTATION

3- Summation convention:

$$
\bar{a} \cdot \bar{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}=\sum_{i=1,3} a_{i} b_{i} \quad \Rightarrow \bar{a} \cdot \bar{b}=a_{i} b_{i}
$$

whenever a suffix is repeated in a single term in an equation, summation from 1 to 3 is implied. The repeated suffix is called dummy suffix.
The choice of the dummy suffix is arbitrary: we can write also $\bar{a} \cdot \bar{b}=a_{k} b_{k}$
No suffix appears more than twice in any term of the expression:

$$
(\bar{a} \cdot \bar{b})(\bar{c} \cdot \bar{d})=a_{i} b_{i} \underbrace{c_{j} d_{j}}_{\text {we cannot use " } i \text { " also here! }}
$$

But the ordering of terms is arbitrary: $a_{i} b_{i} c_{j} d_{j}=c_{j} a_{i} d_{j} b_{i}=c_{k} a_{m} d_{k} b_{m}=(\bar{a} \cdot \bar{b})(\bar{c} \cdot \bar{d})$

Example:

$$
a_{k} a_{k} b_{h} c_{k}=a_{k} c_{k} b_{h}=\left(\sum_{k} a_{k} c_{k}\right) b_{h}=(\bar{a} \cdot \bar{c}) \bar{b}
$$

[^0]
TENSORS

The Ohm's law is: $\quad \bar{j}=\sigma \bar{E}$

In suffix notation this can be written very concisely: $j_{i}=\sigma_{i k} E_{k}$
σ is a cartesian tensor of rank 2 in the 3-D space.
the rank is the number of suffixes
And it has 3^{2} components
A tensor of rank M
in the n-D space has n^{M} components
$t_{i j}$ is a tensor of rank 2 and can be regarded as a matrix if it is defined in the 2D space, then $i, j=1,2 \quad$ and it has 2^{2} components in the 3D space, then $i, j=1,2,3$ and it has 3^{2} components in the 4D space, then $i, j=1,2,3,4$ and it has 4^{2} components
t_{m} is a tensor of rank 1 and can be regarded as a vector
A tensor is "Cartesian" if the coordinate system is Cartesian

The Kronecker delta

The Kronecker delta is a tensor of rank 2 defined as:

$$
\delta_{i j}=\left\{\begin{array}{ll}
1 & i=j \\
0 & \text { otherwise }
\end{array} \begin{array}{c}
\text { It an an be visualized } \\
\text { (where } n \text { ident the dimension } \\
\text { of the space) }
\end{array} ~\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right.
$$

Some properties of the Kronecker delta:

$\delta_{k m} a_{m}=a_{k} \quad \delta_{k m} a_{m}=\sum_{m} \delta_{k m} a_{m}=a_{1} \delta_{k 1}+a_{2} \delta_{k 2}+\ldots+a_{m} \delta_{k m}+\ldots=a_{k}$
$\delta_{k m} l_{j m}=l_{j k}$

The alternating tensor

(Levi-Civita tensor or permutationssymbolen)
The alternating tensor $\varepsilon_{i j k}$ (a tensor of rank 3) is defined as:
$\varepsilon_{i j k}=\hat{e}_{i} \cdot\left(\hat{e}_{j} \times \hat{e}_{k}\right)=\left\{\begin{array}{lll}0 & \text { if any of } i, j, k \text { are equal } \\ +1 & \text { if }(i, j, k)=(1,2,3) \text { or }(2,3,1) \text { or }(3,1,2) & \text { (even permutation of } 1,2,3) \\ -1 & \text { if }(i, j, k)=(1,3,2) \text { or }(2,1,3) \text { or }(3,2,1) & \text { (odd permutation of } 1,2,3)\end{array}\right.$
The alternating tensor can be used to express the cross product: $\quad(\bar{a} \times \bar{b})_{i}=\varepsilon_{i j k} a_{j} b_{k}$ PROOF:

$$
(\bar{a} \times \bar{b})_{i}=\hat{e}_{i} \cdot(\bar{a} \times \bar{b})=\hat{e}_{i} \cdot\left[\left(a_{j} \hat{e}_{j}\right) \times\left(b_{k} \hat{e}_{k}\right)\right]=\hat{e}_{i} \cdot\left(\hat{e}_{j} \times \hat{e}_{k}\right) a_{j} b_{k}=\varepsilon_{i j k} a_{j} b_{k}
$$

EXAMPLE FOR THE x COMPONENT ($i=1$):

$$
\begin{aligned}
& (\bar{a} \times \bar{b})_{1}=a_{2} b_{3}-a_{3} b_{2} \\
& \varepsilon_{1 j k} a_{j} b_{k}=\sum_{j=1}^{3} \sum_{k=1}^{3} \varepsilon_{1 j k} a_{j} b_{k}=\varepsilon_{123} a_{2} b_{3}+\varepsilon_{132} a_{3} b_{2}=a_{2} b_{3}-a_{3} b_{2}
\end{aligned}
$$

Some properties:

$$
\begin{aligned}
& \varepsilon_{i j k}=\varepsilon_{j k i}=\varepsilon_{k i j} \\
& \varepsilon_{i j k}=-\varepsilon_{j i k} \\
& \varepsilon_{i j k} \varepsilon_{k l m}=\delta_{i l} \delta_{j m}-\delta_{i m} \delta_{j l}
\end{aligned}
$$

(even permutations does NOT change the sign)
(odd permutations change the sign)
$\longleftarrow \quad$ Very useful to simplify expressions involving two cross products

GRADIENT, DIVERGENCE AND CURL IN SUFFIX NOTATION

GRADIENT $\quad \nabla \phi=\left(\frac{\partial \phi}{\partial x}, \frac{\partial \phi}{\partial y}, \frac{\partial \phi}{\partial z}\right)=\left(\frac{\partial \phi}{\partial x_{1}}, \frac{\partial \phi}{\partial x_{2}}, \frac{\partial \phi}{\partial x_{3}}\right)=\left(\phi_{1}, \phi_{2}, \phi_{, 3}\right)$
So, the component i of the gradient is: $\quad(\nabla \phi)_{i}=\phi_{, i}$
DIVERGENCE $\quad \nabla \cdot \bar{A}=\frac{\partial A_{x}}{\partial x}+\frac{\partial A_{y}}{\partial y}+\frac{\partial A_{z}}{\partial z}=\frac{\partial A_{1}}{\partial x_{1}}+\frac{\partial A_{2}}{\partial x_{2}}+\frac{\partial A_{3}}{\partial x_{3}}=\sum_{i} A_{i, i}=A_{i, i}$

$$
\text { So, the divergence is: } \quad \nabla \cdot \bar{A}=A_{i, i}
$$

CURL

$$
\begin{aligned}
(\nabla \times \bar{A})_{x}= & \frac{\partial A_{z}}{\partial y}-\frac{\partial A_{y}}{\partial z}=\frac{\partial A_{3}}{\partial x_{2}}-\frac{\partial A_{2}}{\partial x_{3}}= \\
& A_{3,2}-A_{2,3}=\varepsilon_{123} A_{3,2}+\varepsilon_{132} A_{2,3}=\varepsilon_{1 j k} A_{k, j}
\end{aligned}
$$

So, the component i of the curl is: $\quad(\nabla \times \bar{A})_{i}=\varepsilon_{i j k} A_{k, j}$

CARTESIAN TENSORS (the definition)

Assume that the matrix R defines a rotation in a Cartesian coordinate system

In the new coordinate system the vector \bar{A} is:

$$
\bar{A}^{\prime}=R \bar{A}
$$

and in suffix notation is: $A_{i}^{\prime}=R_{i k} A_{k}$

A Cartesian tensor T of order M (or rank M) is: a quantity in the 3D Euclidean space that has M indices and 3^{M} components

$$
\underset{\text { Minderes }}{T_{i, j, \ldots, o}} \quad i, j, \ldots o=1,2,3
$$

and which under a rotation of coordinates $R_{i j}$ transforms as:

$$
T_{i, j, \ldots, o}^{\prime}=R_{i, p} R_{j, q} \ldots R_{o, w} T_{p, q, \ldots, w}
$$

"Nablaräkning" and "Indexräkning"

use of tensors in the calculation of nabla expressions
Calculate: $\nabla \cdot(\bar{a} \times \bar{r}) \quad$ where $\bar{r}=(x, y, z) \quad$ and \bar{a} is constant

1- Nablaräkning

$$
\nabla \cdot(\bar{a} \times \bar{r})=\nabla \cdot(\bar{a} \times \bar{r})+\nabla \cdot(\bar{a} \times \bar{r})={\underset{\uparrow}{\text { a }}}_{\overline{\bar{n}} \cdot(\bar{a} \times \bar{b})=\bar{a} \cdot(\bar{b} \times \bar{n})}^{0}+\bar{a} \cdot(\bar{r} \times \nabla)=-\bar{a} \cdot(\underbrace{\nabla \times \bar{r})}_{=0}=0
$$

2- Indexräkning

$$
\begin{aligned}
& \nabla \cdot(\bar{a} \times \bar{r})=\left(\varepsilon_{i k l} a_{k} r_{l}\right)_{, i}=\varepsilon_{i k l}\left(a_{k, i} r_{l}+a_{k} r_{l, i}\right)=\varepsilon_{i k l} a_{k} r_{l, i}=0 \\
& r_{l, i} \neq 0 \text { only if } l=i \\
& \text { If } l=i \text { then } \varepsilon_{i j k}=0
\end{aligned}
$$

[^0]: EXERCISE. Write this expression using vectors:
 $a_{i} b_{k} a_{n} c_{k} a_{i}$

